Menu

  • Home
  • Trending
  • Recommended
  • Latest

分類

  • #2021 新年特輯
  • 100天區塊鏈挑戰
  • 2019 台灣區塊鏈產業指南
  • 2020 台灣區塊鏈產業年鑑
  • 2022 台灣年度最影響力人物榜
  • 2023 台灣年度影響力人物榜
  • 2023 新春特輯
  • 2024 TON Hacker House
  • 2024新春特輯
  • ABS 2018 專題報導
  • AI
  • CBDC是什麼?為何全球都在積極研究、有什麼優點與隱憂
  • Cefi
  • dao
  • dApps
  • defi
  • DePIN 如何開啟去中心化物理網路革命?
  • Entertainment
  • EOS
  • EOS insights
  • Gaming
  • Howto & Style
  • ICO
  • JiaJia
  • Layer 2
  • Libra
  • Movie
  • Music
  • News
  • nft
  • Plurality 多元宇宙
  • Starknet 空投落地,後續帶來什麼影響?
  • TON的崛起之路》背靠 Telegram 如何實現 Web3 大規模應用?
  • Uncategorized
  • Web3.0
  • 中國
  • 亞太
  • 交易所
  • 人物專訪
  • 以太坊
  • 以太坊
  • 以太坊 Dencun 坎昆升級將臨,你需要知道的所有事
  • 以太坊再質押協議為何成為最熱門賽道?
  • 供應鏈
  • 保險
  • 債券
  • 元宇宙
  • 全台最大詐騙案!Ace交易所涉垃圾幣詐騙
  • 全球加密貨幣監管最新動態統整
  • 其他國家
  • 其他幣別
  • 分散式帳本技術
  • 創投
  • 加密貨幣「詐騙手法」整理,學習如何保護你的資產
  • 加密貨幣市場
  • 區塊鏈平台
  • 區塊鏈新手全攻略,你需要知道的加密貨幣基礎
  • 區塊鏈新手教學
  • 區塊鏈活動
  • 區鍵禧
  • 即時新聞
  • 台灣
  • 哈希派
  • 國際組織報告
  • 多元宇宙Plurality有多重要?未來20年人類躍進關鍵
  • 央行
  • 娛樂平台
  • 安全
  • 專欄作者
  • 巴拉區塊事
  • 市場分析
  • 幣安與美國司法部達成 43 億美元和解,CZ認罪
  • 影片測試的分類
  • 快訊
  • 技術
  • 抓住空投爆擊!值得埋伏的項目、互動教學總整理
  • 投資分析
  • 挖礦
  • 推薦閱讀
  • 搶先看
  • 支付
  • 政府報告
  • 數位產權
  • 數據報告
  • 概念
  • 歐洲
  • 比特幣
  • 比特幣現貨ETF上市,真帶來了增量資金?
  • 比特幣第四次減半將臨,行情怎麼走?
  • 比特幣銘文大爆發,Oridinal 如何改變 BTC 生態?
  • 比特彭
  • 汪彪
  • 法規
  • 測試網
  • 灰度
  • 物聯網
  • 犯罪
  • 獨立觀點
  • 瑞波
  • 環境永續
  • 社交
  • 私人機構報告
  • 稅務
  • 穩定幣
  • 管制
  • 美國
  • 肺炎
  • 能源
  • 訴訟
  • 評級報告
  • 財金哥 & 區塊妹
  • 身份驗證
  • 遊戲
  • 鄧庶杭
  • 金融市場
  • 銀行
  • 錢包

Subscriptions

  • 零壹財經 01 binary
    01 Binary
  • 0xdt
  • 0xJigglypuff
  • aaaaYYYY
  • ABCDELabs

Recent News

  • 圖解多元宇宙》V神、Glen力推的Plurality是什麼?為何協作技術是人類社會進步關鍵
  • 精選文章搶先看!動區登入Access質押訂閱服務,解鎖寶貴資訊快人一步
  • ABS獨家專訪》Gitcoin共同創辦人Scott:台灣是現實與Web3治理的重要交匯點
動區動趨-最具影響力的區塊鏈新聞媒體
  • Home
    • Home Layout 1
    • Home Layout 2
    • Home Layout 3
  • Browse
    • News
    • Movie
    • Music
    • Technology
    • Howto & Style
    • Entertainment
    • Gaming
  • Features
    • Youtube Video
    • Vimeo Video
    • Dailymotion Video
    • Self-hosted Video
    • User Profile
    • Playlists
    • User-created Playlist
    • Favorite Playlist (Private)
    • Watch Later Playlist (Private)
    • All JNews Features
No Result
View All Result
  • Login
  • Register
UPLOAD
動區動趨-最具影響力的區塊鏈新聞媒體
No Result
View All Result
Home AI

DeFi也行!零知識+AI機器學習「ZKML」的優勢和挑戰

PANews by PANews
2023-06-27
in AI, 技術
583 18
0
DeFi也行!零知識+AI機器學習「ZKML」的優勢和挑戰
827
SHARES
3.8k
VIEWS
Share on FacebookShare on Twitter

當零知識證明與機器學習開始結合並且應用在區塊鏈上,是否能讓區塊鏈的構建更加具有隱私性、安全性以及更高的效率?本文將介紹零知識機器學習(ZKML)的解析。
(前情提要:什麼是零知識機器學習?ZKML最熱趨勢結合,爆發AI無窮潛力 )
(背景補充:去中心化Rollup訪談》ZK技術帶來的新挖礦市場、硬體加速與驗證者網路 )

本文目錄

  • RelatedPosts
  • 圖解多元宇宙》V神、Glen力推的Plurality是什麼?為何協作技術是人類社會進步關鍵
  • 6 Sci-fi Gadgets in Movie We Wish Actually Existed
  • Tesla’s Chinese factory just delivered its first cars
  • ZKML: 零知識證明與機器學習的結合
    • ZK 與 ML 的發展需求與能力互補
    • ZKML 的技術優勢
    • ZK 賦能 ML:提供鏈上基礎設施
    • ML 賦能 ZK:豐富 Web3 應用場景
  • ZKML 面臨的挑戰
  • 結語

 

RelatedPosts

圖解多元宇宙》V神、Glen力推的Plurality是什麼?為何協作技術是人類社會進步關鍵

6 Sci-fi Gadgets in Movie We Wish Actually Existed

Tesla’s Chinese factory just delivered its first cars

區塊鏈技術和機器學習作為兩個備受關注的領域,分別以其去中心化的特性和資料驅動的能力引領著技術的進步。區塊鏈技術中的 ZK(零知識,Zero-Knowledge,下文簡稱 ZK)是密碼學中的一個概念, 指的是一種證明或互動過程,其中證明者能夠向驗證者證明某個陳述的真實性,而不洩露任何有關這個陳述的具體資訊。 ML(機器學習,Machine Learning,下文簡稱 ML),是 AI 的分支領域。機器學習從輸入資料中學習、總結形成模型並能做出預測和決策。

在這一背景下,結合兩者的 ZKML(Zero-Knowledge Machine Learning 零知識機器學習)在近期蓬勃發展。ZKML 將零知識證明的隱私保護和驗證能力與機器學習的資料處理和決策能力相結合,為區塊鏈應用帶來了全新的機遇和可能性。ZKML 為我們提供了一種同時保護資料隱私、驗證模型準確性和提升算力效率的解決方案。

本文將深入介紹 ZKML,瞭解其技術原理和應用場景,與開發者們一起探索這個令人興奮的交叉領域, 揭祕 ZKML 如何構建隱私性更加完備、更具安全性和高效性的數位化未來!

ZKML: 零知識證明與機器學習的結合

零知識證明與機器學習能在區塊鏈上結合的原因有二:

  • 一方面, ZK 的零知識技術不僅希望能實現鏈上交易的高效驗證 ,ZK 的開發者也更希望 ZK 能用在更廣闊的生態領域中,ML 的強大 AI 支援,成為 ZK 應用生態擴充套件的極佳助力者。
  • 另一方面, ML 模型從開發到使用的全流程都面臨著信任證明問題 ,ZK 能幫助 ML 實現不洩露資料和資訊的前提下實現有效性的證明,解決 ML 的信任困境。ZKML 的結合,是兩者各取所需、雙向奔赴,也將為區塊鏈生態新增動能。

ZK 與 ML 的發展需求與能力互補

ML 有大量信任問題需要解決,各個工作流程的準確性、完整性、隱私性需要被證明。ZK 剛好能在確保隱私性的前提下有效驗證任何類計算是否正確執行, 很好地解決了機器學習長期存在的信任證明問題 。模型的完整性是 ML 訓練過程中的重要信任證明問題,但 ML 模型訓練和使用的資料和資訊的隱私保護同樣重要。這使 ML 的訓練難以通過第三方審計監管機構完成信任證明,去中心化的零知識屬性的 ZK 是與 ML 具有極高匹配性的信任證明路徑。

「AI 提升生產力,區塊鏈優化生產關係」,ML 為 ZK 賽道注入更高的創新動能和服務質量、ZK 為 ML 提供可驗證性與隱私保護,ZKML 雙方在區塊鏈環境中互補執行。

ZKML 的技術優勢

ZKML 的主要技術優勢實現了計算完整性、隱私保護性與啟發式優化結合。從隱私角度上來看,ZKML 的優勢在於:

實現透明驗證

零知識證明(ZK)可以在不暴露模型內部細節的情況下評估模型效能, 實現透明和無需信任的評估過程 。

資料隱私保障

ZK 可用於使用公共模型驗證公共資料或使用私有模型驗證私有資料,以此保證資料的隱私性和敏感性。

ZK 本身通過密碼學協議,在保證隱私性的前提下確保了某個宣告的正確性,很好的解決了計算正確性證明機器學習在隱私保護上、同態加密機器學習在隱私保護上的缺陷。 將 ZK 融入 ML 過程中,建立了一個安全且保護隱私的平臺,解決了傳統機器學習的不足。 這不僅鼓勵隱私公司採用機器學習技術,Web2 開發人員也更有動力來探索 Web3 的技術潛力。

ZK 賦能 ML:提供鏈上基礎設施

ML 上鏈的算力桎梏與 ZK-SNARKs

在鏈下已經較為成熟的 ML 之所以剛剛進軍鏈上,是因為區塊鏈的算力成本過高。很多機器學習專案因算力限制無法直接在以 EVM 為代表的區塊鏈環境下執行。同時,雖然 ZK 的有效性驗證比重複計算效率更高,但這種優勢僅限於區塊鏈原生的交易資料處理。當 ZK 本就複雜的密碼學運算和互動面臨 ML 的大量運算時,區塊鏈的低 TPS 問題便暴露出來, 區塊鏈算力低下的問題成為阻礙 ML 上鏈的最大桎梏。

ZK-SNARKs 的出現緩解了 ML 的高算力需求問題。ZK-SNARKs 是一種零知識證明的密碼學構造,其全稱為 “零知識可擴充套件非互動式引數論證”(Zero-Knowledge Succinct Non-Interactive Argument of Knowledge)。它是一種基於橢圓曲線密碼學和同態加密的技術,用於實現高效的零知識證明。ZK-SNARK 具有高度緊湊性的特點,通過使用 ZK-SNARKs,證明者可以生成一個短而緊湊的證明,而驗證者只需進行少量的計算即可驗證證明的有效性,無需與證明者多次互動。 這種僅需一次有證明者向驗證者互動的性質,使 ZK-SNARKs 在實際應用中具有高效性和實用性 ,更加適配 ML 的鏈上算力需求。目前,ZK-SNARKs 是 ZKML 中 ZK 的主要形式。

延伸閱讀:科普|zk-SNARKs是什麼?V神定調零知識證明未來十年「非常重要」

ML 的鏈上基礎設施需求與對應專案

ZK 對 ML 的賦能主要體現在 ML 全過程的零知識證明上,是 ML 與鏈上功能的互動。這種互動所需解決的兩大問題是將兩者的資料形態對接併為 ZK 證明過程提供算力。

  • ZK 硬體加速: ML 的 ZK 證明較為複雜,這需要硬體輔助鏈上算力加速證明計算。這類專案包括:Cysic、Ulvetanna、Ingonyama、Supranational、Accseal。
  • ML 鏈上資料處理: 將鏈上資料處理為可進入 ML 訓練的資料形式,並幫助 ML 的輸出結果更方便從鏈上訪問。這類專案包括:Axiom、Herodotus、LAGRANGE、Hyper Oracle。
  • ML 計算電路化: ML 計算模式與 ZK 的鏈上電路化證明有所差異,ML 的上鏈必須將其計算模式轉化為能被區塊鏈 ZK 處理的電路形式。這類專案包括:Modulus Labs、Jason Morton、Giza。
  • ML 結果的 ZK 證明: ML 的信任證明問題,需要由鏈上 ZK 解決。基於 ZK-SNARKs 建構在 Risc Zero 或 Nil Foundation 上的應用就可以實現模型真實性證明。這類專案包括:RISC Zero、Axiom、Herodotus、Delphinus Lab、Hyper Oracle、Poseidon ZKP、IronMill。

ML 賦能 ZK:豐富 Web3 應用場景

ZK 解決 ML 的信任證明問題,併為 ML 提供了上鏈機會。很多 Web3 領域急需 AI ML 的生產力或決策支援,ZKML 使鏈上應用在保證去中心化與有效性的前提下,實現了 AI 的賦能。

DeFi

ZKML 可以幫助 DeFi 更加自動化,其一是鏈上協議引數更新的自動化;其二是交易策略的自動化。

  • Modulus Labs 推出了 RockyBot,其是有史以來第一個完全鏈上的人工智慧交易機器人。

DID

ZKML 可以助力 Web3 去中心化身份 DID 的建設。此前,私鑰、助記詞等身份管理模式使 Web3 使用者體驗較差,真正的 DID 建設可以通過 ZKML 進行 Web3 主體生物資訊的識別完成,同時,ZKML 能保證使用者生物資訊隱私的安全性。

  • Worldcoin 正在應用 ZKML 實現基於虹膜掃描的零知識 DID 驗證。

延伸閱讀:深度研究》Worldcoin想實現AI時代「全民基本收入」能否成真?

遊戲

ZKML 可以幫助 Web3 遊戲實現全功能上鏈。ML 可以為遊戲互動帶來差異性的自動化,增加遊戲的趣味性;而 ZK 可以使 ML 的互動決策上鏈。

  • Modulus Labs 推出了 ZKML 驅動的國際象棋遊戲 @VsLeela;
  • AI ARENA 運用 ZKML 實現了鏈上 NFT 遊戲的高互動性。

醫療保健與法律諮詢

醫療保健與法律諮詢是高隱私性且需要大量案例積累的領域,ZKML 可以幫助使用者完成決策且保證使用者的隱私不被洩露。

ZKML 面臨的挑戰

ZKML 目前正在蓬勃發展,但因其非原生於區塊鏈且需要大量算力,ZKML 未來主要面臨以下兩大挑戰:

  • ML 資料量化上鏈過程中的引數失真問題:
  • 大多數 ML 採用浮點數表示模型的引數,而 ZK 電路需要使用定點數。在這一數位型別轉化過程中,ML 的引數的精確度會有所降低,一定程度導致 ML 輸出結果的失真。
  • 其大模型 ZK 證明的高算力要求問題:
  • 目前區塊鏈的算力無法應對大規模、高計算量的鏈上 ZKML, 當下流行的 ZK-SNARKs 僅支援小規模、較小計算量的 ML 零知識證明。 算力侷限是影響 ZKML 區塊鏈應用發展的關鍵因素。
  • ZK 生成證明的階段計算複雜度較高,需要大量的算力資源。 由於 ZK 證明階段通常需要訪問和處理的資料之間存在高度的關聯性,導致這個過程難以分散式進行,其無法 「可並行化」。將這個過程進行分散式處理,可能會引入額外的複雜性,甚至會降低整體效能。目前,解決 ZK 計算效率問題,主流的研究方向更多的是在演算法優化和硬體加速。

結語

ZKML 是零知識證明與機器學習的雙向奔赴, 近期不斷發展的區塊鏈技術 ZK 幫助 ML 解決信任證明問題併為 ML 提供鏈上環境 ; 成熟的 AI 技術 ML 幫助 ZK 實現 Web3 生態拓展與應用創新 。

ZKML 的發展面臨一些挑戰,如引數失真問題和大模型的高算力要求,但這些問題可以通過技術創新和硬體加速等手段得到解決。隨著 ZKML 專案的不斷湧現和發展, 我們可以預見它在 DeFi、DID、遊戲、醫療保健等領域將為 Web3 生態帶來更多創新和價值。

在未來, ZKML 有望成為真正解鎖 Web3 + AI 交叉融合的鑰匙 ,為進一步構建安全、隱私保護和高效的區塊鏈應用提供強有力的支援。通過結合 ZK 的零知識性和 ML 的資料處理能力,我們一定能夠開創更加開放、智慧和可信賴的數位世界!

📍相關報導📍

Opside 的 ZK-PoW 是什麼?可「挖礦」賣零知識證明給L2、AI

IOSG研報》開發者眼中不同 ZKRollup 的使用體驗

zkEVM有哪五大常見類型?項目進展一次看

Tags: ZKZKML機器學習零知識證明

Recommended videos

2:48

Glastonbury introduces new campsite to reduce waste

2.5k Views
2024-07-11
    8:53

    Death Stranding – Release Date Reveal Trailer

    2.5k Views
    2024-07-02
      精選文章搶先看!動區登入Access質押訂閱服務,解鎖寶貴資訊快人一步

      精選文章搶先看!動區登入Access質押訂閱服務,解鎖寶貴資訊快人一步

      2.5k Views
      2024-09-04
        1:07

        Switch fishing using Joy-Con as futuristic fishing rod

        2.5k Views
        2024-07-16
          Show More
          Copyright (c) 2019 by Jegtheme.
          • About
          • Buy JNews
          • Request A Demo
          • Contact
          No Result
          View All Result
          • Account
          • BlockTempo Beginner – 動區新手村
          • Change Password
          • Forgot Password?
          • Home 1
          • Home 2
          • Home 3
          • Jin-homepage
          • Latest
          • Login
          • Profile
          • Register
          • Reset Password
          • Trending
          • Users
          • Users List Item
          • 不只加密貨幣,談談那些你不知道的區塊鏈應用|動區新手村
          • 所有文章
          • 關於 BlockTempo

          © 2025 JNews - Premium WordPress news & magazine theme by Jegtheme.

          Welcome Back!

          Login to your account below

          Forgotten Password? Sign Up

          Create New Account!

          Fill the forms below to register

          All fields are required. Log In

          Retrieve your password

          Please enter your username or email address to reset your password.

          Log In

          Add New Playlist